Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.143
Filter
1.
J Mater Chem B ; 12(17): 4248-4261, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38602387

ABSTRACT

Prolonged use of very commonly prescribed non-steroidal anti-inflammatory drugs (NSAIDs) is often associated with undesired side effects, including gastrointestinal ulcers due to the non-selective inhibition of cyclooxygenases. We describe the development of an inflammatory-stimuli-responsive turn-on fluorogenic theranostic prodrug DCF-HS for adjuvant drug delivery. Upon activation by reactive oxygen species (ROS), the prodrug releases diclofenac DCF (active drug) and the NIR fluorophore DCI-NH2 along with carbonyl sulfide (COS). The second activation of COS by the enzyme carbonic anhydrase (CA) generates hydrogen sulfide (H2S). The prodrug was conveniently synthesized using multi-step organic synthesis. The UV-Vis and fluorescence studies revealed the selective reactivity of DCF-HS towards ROS such as H2O2 in the aqueous phase and the desired uncaging of the drug DCF with turn-on NIR fluorescent reporter under physiological conditions. Furthermore, the release of fluorophore DCI-NH2 and drug DCF was confirmed using the reverse phase HPLC method. Compatibility of prodrug activation was studied next in the cellular medium. The prodrug DCF-HS was non-toxic in a representative cancer cell line (HeLa) and a macrophage cell line (RAW 264.7) up to 100 µM concentration, indicating its biocompatibility. The intracellular ROS-mediated activation of the prodrug with the release of NIR dye DCI-NH2 and H2S was investigated in HeLa cells using the H2S-selective probe WSP2. The anti-inflammatory activity of the active drug DCF from the prodrug DCF-HS was studied in the lipopolysaccharide (LPS)-induced macrophage cell line and compared to that of the parent drug DCF using western blot analysis and it was found that the active drug resulted in pronounced inhibition of COX-2 in a dose-dependent manner. Finally, the anti-inflammatory potential of the prodrug and the turn-on fluorescence were validated in the inflammation-induced Wister rat models.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Diclofenac , Hydrogen Sulfide , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Hydrogen Sulfide/metabolism , Animals , Humans , Diclofenac/pharmacology , HeLa Cells , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Rats , Theranostic Nanomedicine , Inflammation/drug therapy , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Fluorescent Dyes/chemical synthesis , Mice , RAW 264.7 Cells , Drug Delivery Systems , Edema/drug therapy , Edema/chemically induced
2.
Eur J Med Chem ; 271: 116427, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38657479

ABSTRACT

Glucocorticoids (GCs) have been used in the treatment of sepsis because of their potent anti-inflammatory effects. However, their clinical efficacy against sepsis remains controversial because of glucocorticoid receptor (GR) downregulation and side effects. Herein, we designed and synthesized 30 ocotillol derivatives and evaluated their anti-inflammatory activities. Ocotillol 24(R/S) differential isomers were stereoselective in their pharmacological action. Specifically, 24(S) derivatives had better anti-inflammatory activity than their corresponding 24(R) derivatives. Compound 20 most effectively inhibited NO release (85.97% reduction), and it exerted dose-dependent inhibitory effects on interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) levels. Mechanistic studies revealed that compound 20 reduces the degradation of GR mRNA and GR protein. Meanwhile, compound 20 inhibited the activation of nuclear factor-κB (NF-κB) signaling, thereby inhibiting the nuclear translocation of p65 and attenuating the inflammatory response. In vivo studies revealed that compound 20 attenuated hepatic, pulmonary, and renal pathology damage in mice with sepsis and suppressed the production of inflammatory mediators. These results indicated that compound 20 is a promising lead compound for designing and developing anti-sepsis drugs.


Subject(s)
NF-kappa B , Receptors, Glucocorticoid , Sepsis , Signal Transduction , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/antagonists & inhibitors , Sepsis/drug therapy , Animals , NF-kappa B/metabolism , NF-kappa B/antagonists & inhibitors , Mice , Signal Transduction/drug effects , Structure-Activity Relationship , Humans , Molecular Structure , RAW 264.7 Cells , Drug Discovery , Male , Dose-Response Relationship, Drug , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
3.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635880

ABSTRACT

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glycosides , Steroids , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Steroids/chemical synthesis , Mice , Animals , Humans , Density Functional Theory , Molecular Structure , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Macrophages/drug effects
4.
Org Biomol Chem ; 22(18): 3708-3724, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639206

ABSTRACT

Despite the high global prevalence, rheumatoid arthritis lacks a satisfactory treatment. Hence, the present study is undertaken to design and synthesize novel anti-inflammatory compounds. For this, quinoline and anthranilic acid, two medicinally-privileged moieties, were linked by pharmacophore hybridization, and following their computational assessments, three hybrids 5a-c were synthesized in good over all yields. The in vitro and in vivo anti-inflammatory potential of these hybrids was determined by anti-denaturation and anti-proteinase, and carrageenan-induced paw edema models. The computational studies of these hybrids revealed their drug-likeness, optimum pharmacokinetics, and less toxicity. Moreover, they demonstrated high binding affinity (-9.4 to -10.6 kcal mol-1) and suitable binding interactions for TNF-α, FLAP, and COX-II. A three-step synthetic route resulted in the hybrids 5a-c with 83-86% yield of final step. At 50 µg mL-1, the antiprotease and anti-denaturation activity of compound 5b was significantly higher than 5a and 5c. Furthermore, 5b significantly reduced the edema in the right paw of the rats that received carrageenan. The results of this study indicate the medicinal worth of the novel hybrids in treating inflammatory disorders such as rheumatoid arthritis.


Subject(s)
Drug Design , Edema , Molecular Docking Simulation , Quinolines , ortho-Aminobenzoates , Quinolines/chemistry , Quinolines/pharmacology , Quinolines/chemical synthesis , Animals , Edema/drug therapy , Edema/chemically induced , ortho-Aminobenzoates/chemistry , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/chemical synthesis , Rats , Carrageenan , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Molecular Structure , Rats, Wistar , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Dose-Response Relationship, Drug , Structure-Activity Relationship , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/chemistry
5.
Chem Biodivers ; 21(5): e202400030, 2024 May.
Article in English | MEDLINE | ID: mdl-38511964

ABSTRACT

A traditional Chinese medicine ingredient, dendrobine, has been demonstrated to have anti-inflammatory properties. However, due to its poor anti-inflammatory properties, its clinical use is limited. Consequently, we have designed and synthesized 32 new amide/sulfonamide dendrobine derivatives and screened their anti-inflammatory activities in vitro. Experiments showed that nitric oxide (NO) generation in lipopolysaccharide (LPS)-induced RAW264.7 cells was strongly reduced by derivative 14, with an IC50 of 2.96 µM. Western blot research revealed that 14 decreased the concentration-dependent expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS). Molecular docking was used to predict the binding of the inflammation-associated proteins COX-2 and INOS to compound 14.


Subject(s)
Amides , Cyclooxygenase 2 , Lipopolysaccharides , Molecular Docking Simulation , Nitric Oxide Synthase Type II , Nitric Oxide , Sulfonamides , Animals , Mice , RAW 264.7 Cells , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Cyclooxygenase 2/metabolism , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Molecular Structure , Dose-Response Relationship, Drug , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry
6.
Arch Pharm (Weinheim) ; 357(5): e2300615, 2024 May.
Article in English | MEDLINE | ID: mdl-38315093

ABSTRACT

Novel arylidene-5(4H)-imidazolone derivatives 4a-r were designed and evaluated as multidrug-directed ligands, that is, inflammatory, proinflammatory mediators, and reactive oxygen species (ROS) inhibitors. All of the tested compounds showed cyclooxygenase (COX)-1 inhibitory effect more than celecoxib and less than indomethacin and also demonstrated an improved inhibitory activity against 15-lipoxygenase (15-LOX). Compounds 4f, 4l, and 4p exhibited COX-2 selectivity comparable to that of celecoxib, while 4k was the most selective COX-2 inhibitor. Interestingly, the screened results showed that compound 4k exhibited a superior inhibition effect against 15-LOX and was found to be the most selective COX-2 inhibitor over celecoxib, whereas compound 4f showed promising COX-2 and 15-LOX inhibitory activities besides its inhibitory effect against ROS production and its lowering effect of both tumor necrosis factor-α and interleukin-6 levels by ∼80%. Moreover, compound 4f attenuated the lipopolysaccharide-mediated increase in NF-κB activation in RAW 264.7 macrophages. The preferred binding affinity of these molecules was confirmed by docking studies. We conclude that arylidene-5(4H)-imidazolone scaffolds provide promising hits for developing new synthons with anti-inflammatory and antioxidant activities.


Subject(s)
Arachidonate 15-Lipoxygenase , Cyclooxygenase 2 Inhibitors , Drug Design , Lipoxygenase Inhibitors , Molecular Docking Simulation , Reactive Oxygen Species , Mice , Animals , RAW 264.7 Cells , Structure-Activity Relationship , Arachidonate 15-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Macrophages/drug effects , Macrophages/metabolism , Humans
7.
Curr Pharm Des ; 30(5): 333-351, 2024.
Article in English | MEDLINE | ID: mdl-38303528

ABSTRACT

Due to its important biological and pharmacological properties, in the field of medicinal chemistry and drug discovery, the N-acylhydrazone motif has shown to be extremely adaptable and promising. This scaffold has become a crucial component in the synthesis of numerous bioactive agents. N-Acylhydrazones are also interesting biological and synthetic tools due to their easy and straightforward synthesis. The current review provides a summary of the analgesic and anti-inflammatory activities of N-acylhydrazone derivatives over the past ten years. A brief discussion of structure-activity relationships is also provided which may guide researchers in medicinal chemistry to develop derivatives based on N-acylhydrazone scaffold as potent anti-inflammatory candidates.


Subject(s)
Analgesics , Hydrazones , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Hydrazones/therapeutic use , Humans , Analgesics/pharmacology , Analgesics/chemistry , Analgesics/chemical synthesis , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Pain/drug therapy , Pharmacophore
8.
Chempluschem ; 89(5): e202300734, 2024 May.
Article in English | MEDLINE | ID: mdl-38216541

ABSTRACT

Four alkaline earth metal complexes of ketoprofen (Hket) and indomethacin (Hind) were synthesized and characterized: [Ca(ket)2(H2O)2]n (1), [Mg(ket)2(H2O)2] (2), [Ca(ind)2(EtOH)2]n (3), and [Mg(ind)2(EtOH)2] (4). All compounds were studied by elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Crystal structures of 1 and 3 were determined by single crystal X-ray diffraction technique T=100 K. The structure of 1 is dominated by a one-dimensional coordination polymer, while 3 is formed by a two-dimensional layer stabilized by the calcium zig-zag chains and π⋅⋅⋅π stacking interactions. Crystal packing arrangements were characterized by fingerprint plots (FPs) that were derived from the Hirshfeld surfaces (HSs). The antioxidant and antimicrobial activities of complexes were evaluated against Gram-positive and Gram-negative bacteria as well as yeasts.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Antioxidants , Coordination Complexes , Microbial Sensitivity Tests , Polymers , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Crystallography, X-Ray , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Coordination Complexes/pharmacology , Polymers/chemistry , Polymers/chemical synthesis , Polymers/pharmacology , Calcium/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Models, Molecular , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Indomethacin/pharmacology , Indomethacin/chemistry
9.
Ann Pharm Fr ; 81(5): 801-813, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36931432

ABSTRACT

BACKGROUND: An array of commercially viable intermediate molecules necessary for the synthesis of a variety of bioactive molecules are chemically synthesized by pyrrolidine and its derivatives, which play a significant role in drug design and development process. AIM: The aim of the present research work was to explore the synthesis of some new pyrrolidine derivatives and to perform their in silico studies and finally evaluation of analgesic and anti-inflammatory activity. OBJECTIVE: The purpose of this study was to synthesis new pyrrolidine derivatives, examine how they affected the COX-1 and COX-2 enzymes computationally, and to screen their in vivo analgesic and anti-inflammatory activity on laboratory animals. METHOD: The new pyrrolidine derivatives were synthesized by condensing N-(3-acetylphenyl)-2-(pyrrolidin-1-yl)acetamide with substituted aniline in ethanol in the presence of catalytic amounts of glacial acetic acid. The structures of novel pyrrolidine derivatives were characterised using IR, NMR, and mass spectroscopy. Several molecular properties of the newly synthesized derivatives were calculated in order to evaluate the nature of the drug-like candidate. A specific reference cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzyme was used to dock the newly synthesized pyrrolidine derivatives. RESULTS: From the observed data, it was noted that amongst all newly synthesized compounds, A-1 and A-4 exhibited the highest anti-inflammatory and analgesic effects, respectively. CONCLUSION: On the basis of findings of present research, it was concluded that A-1 and A-4 might be utilized as a promising new lead compound for Non-Steroidal Anti-Inflammatory Drug (NSAIDs) development.


Subject(s)
Analgesics , Anti-Inflammatory Agents, Non-Steroidal , Pyrrolidines , Computer Simulation , Pyrrolidines/chemical synthesis , Pyrrolidines/pharmacology , Pyrrolidines/toxicity , Analgesics/chemical synthesis , Analgesics/pharmacology , Analgesics/toxicity , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/toxicity , Male , Female , Animals , Rats , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/toxicity
10.
Molecules ; 27(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209053

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are generally utilized for numerous inflammatory ailments. The long-term utilization of NSAIDs prompts adverse reactions such as gastrointestinal ulceration, renal dysfunction and hepatotoxicity; however, selective COX-2 inhibitors prevent these adverse events. Various scientific approaches have been employed to identify safer COX-2 inhibitors, as in any case, a large portion of particular COX-2 inhibitors have been retracted from the market because of severe cardiovascular events. This study aimed to develop and synthesize a novel series of indomethacin analogues with potential anti-inflammatory properties and fewer side effects, wherein carboxylic acid moiety was substituted using DCC/DMAP coupling. This study incorporates the docking of various indomethacin analogues to detect the binding interactions with COX-2 protein (PDB ID: 3NT1). MD simulation was performed to measure the stability and flexibility of ligand-protein interactions at the atomic level, for which the top-scoring ligand-protein complex was selected. These compounds were evaluated in vitro for COX enzymes inhibition. Likewise, selected compounds were screened in vivo for anti-inflammatory potential using the carrageenan-induced rat paw oedema method and their ulcerogenic potential. The acute toxicity of compounds was also predicted using in silico tools. Most of the compounds exhibited the potent inhibition of both COX enzymes; however, 3e and 3c showed the most potent COX-2 inhibition having IC50 0.34 µM and 1.39 µM, respectively. These compounds also demonstrated potent anti-inflammatory potential without ulcerogenic liability. The biological evaluation revealed that the compound substituted with 4-nitrophenyl was most active.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chemistry Techniques, Synthetic , Drug Design , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Biomarkers , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/pharmacology , Dose-Response Relationship, Drug , Heterocyclic Compounds/chemical synthesis , Indomethacin/chemical synthesis , Indomethacin/chemistry , Indomethacin/pharmacology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Proteins/chemistry , Structure-Activity Relationship
11.
J Enzyme Inhib Med Chem ; 37(1): 817-831, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35220836

ABSTRACT

T-LAK-cell-originated protein kinase (TOPK), a novel member of the mitogen-activated protein kinase family, is considered an effective therapeutic target for skin inflammation. In this study, a series (A - D) of paeonol derivatives was designed and synthesised using a fragment growing approach, and their anti-inflammatory activities against lipopolysaccharide (LPS)-induced nitric oxide production in RAW264.7 cells were tested. Among them, compound B12 yielded the best results (IC50 = 2.14 µM) with low toxicity (IC50 > 50 µM). Preliminary mechanistic studies indicated that this compound could inhibit the TOPK-p38/JNK signalling pathway and phosphorylate downstream related proteins. A murine psoriasis-like skin inflammation model was used to determine its therapeutic effect.


Subject(s)
Acetophenones/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Discovery , Inflammation/drug therapy , Skin/drug effects , Acetophenones/chemical synthesis , Acetophenones/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Line , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Inflammation/metabolism , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Signal Transduction/drug effects , Skin/metabolism , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
12.
Bioorg Med Chem ; 56: 116627, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35063896

ABSTRACT

As our ongoing work on lathyrane diterpenoid derivatization, three series of lathyrane diterpenoid derivatives were designed and synthesized based combination principles, including pyrazole, thiazole and furoxan moieties. Biological evaluation indicated that compound 23d exhibited excellently inhibitory activity on LPS-induced NO production in RAW264.7 cells (IC50 = 0.38 ± 0.18 µM). The preliminary structure-activity relationships (SARs) suggested that phenylsulfonyl substituted furoxan moiety had the strongest ability to improve anti-inflammatory activity of lathyrane diterpenoids. Furthermore, compound 23d significantly reduced the level of ROS. Its molecular mechanism was related to inhibiting the transcriptional activation of Nrf2/HO-1 pathway. Based on these considerations, 23d might be a promising anti-inflammatory agent, which is noteworthy for further exploration.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Diterpenes/pharmacology , Heterocyclic Compounds/pharmacology , Nitrogen Compounds/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Diterpenes/chemical synthesis , Diterpenes/chemistry , Dose-Response Relationship, Drug , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/metabolism , Heterocyclic Compounds/chemistry , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Molecular Structure , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitrogen Compounds/chemistry , RAW 264.7 Cells , Structure-Activity Relationship
13.
Int J Mol Sci ; 23(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35008977

ABSTRACT

To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Imidazoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Oxadiazoles/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cell Line , Chemistry Techniques, Synthetic , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Density Functional Theory , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Humans , Molecular Structure , Reactive Oxygen Species/metabolism , Spectrum Analysis , Structure-Activity Relationship
14.
ACS Appl Mater Interfaces ; 14(2): 2534-2550, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985258

ABSTRACT

The successful treatment of infected wounds requires strategies with effective antimicrobial, anti-inflammatory, and healing-promoting properties. Accordingly, the use of Cu2+ and tetracycline (TC), which can promote angiogenesis, re-epithelialization, and collagen deposition, also antibacterial activity, at the wound site, has shown application prospects in promoting infected wound repair. However, realizing controllable release to prolong action time and avoid potential toxicities is critical. Moreover, near-infrared light (NIR)-activated mesoporous polydopamine nanoparticles (MPDA NPs) reportedly exert anti-inflammatory effects by eliminating the reactive oxygen species generated during inflammatory responses. In this study, we assess whether Cu2+ and TC loaded in MPDA NPs can accelerate infected wound healing in mice. In particular, Cu2+ is chelated and immobilized on the surface of MPDA NPs, while a thermosensitive phase-change material (PCM; melting point: 39-40 °C), combined with antibiotics, was loaded into the MPDA NPs as a gatekeeper (PPMD@Cu/TC). Results show that PPMD@Cu/TC exhibits significant great photothermal properties with NIR irradiation, which induces the release of Cu2+, while inducing PCM melting and, subsequent, TC release. In combination with anti-inflammatory therapy, NIR-triggered Cu2+ and TC release enables the nanocomposite to eradicate bacterial wound infections and accelerate healing. Importantly, negligible damage to primary organs and satisfactory biocompatibility were observed in the murine model. Collectively, these findings highlight the therapeutic potential of this MPDA-based platform for controlling bacterial infection and accelerating wound healing.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Biocompatible Materials/pharmacology , Wound Healing/drug effects , Wound Infection/drug therapy , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line , Escherichia coli/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Infrared Rays , Materials Testing , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Nanocomposites/chemistry , Particle Size , Polymers/chemistry , Polymers/pharmacology , Porosity , Reactive Oxygen Species/metabolism , Skin/drug effects , Skin/metabolism , Staphylococcus aureus/drug effects , Surface Properties
15.
Carbohydr Polym ; 278: 118996, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34973799

ABSTRACT

A chondroitin sulfate zinc (CSZn) complex was prepared by an ion-exchange method. The purified product was characterized by energy-dispersive X-ray spectroscopy, high-performance chromatography, elemental analysis, Fourier transform infrared spectroscopy, inductively coupled mass spectrometry, and nuclear magnetic resonance spectroscopy. The CSZn demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus and satisfied MTT cell viability (NIH3T3 fibroblasts) at ≤50 µg/mL. RT-PCR demonstrated significant promotion by CSZn of fibroblast growth factor beta (ß-FGF), collagen III (COLIIIα1), vascular endothelial growth factor (VEGF) and reduction of cytokines IL-6, IL-1ß & TNF-alpha. An in vivo rat full-thickness wound healing model demonstrated significant wound healing of CSZn relative to controls of saline treatment, zinc chloride treatment and chondroitin treatment. CSZn has demonstrated promising antibacterial and wound healing properties making it deserving of consideration for more advanced wound healing applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chondroitin Sulfates/pharmacology , Skin/drug effects , Wound Healing/drug effects , Zinc/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carbohydrate Conformation , Cell Survival/drug effects , Chondroitin Sulfates/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Formaldehyde , Male , Microbial Sensitivity Tests , Particle Size , Rats , Rats, Sprague-Dawley , Skin/pathology , Staphylococcus aureus/drug effects , Zinc/chemistry
16.
ChemMedChem ; 17(2): e202100550, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34710263

ABSTRACT

We report the influence of Fe3 O4 nanoparticles (NPs) on porphyrins in the development of photosensitizers (PSs) for efficient photodynamic therapy (PDT) and possible post-PDT responses for inflicting cancer cell death. Except for Au, most metal-based nanomaterials are unsuitable for clinical applications. The US Food and Drug Administration and other agencies have approved Feraheme and a few other iron oxide NPs for clinical use, paving the way for novel biocompatible immunoprotective superparamagnetic iron oxide nanohybrids to be developed as nanotherapeutics. A water-soluble nanohybrid, referred to here as E-NP, comprising superparamagnetic Fe3 O4 NPs functionalised with tripyridyl porphyrin PS was introduced through a rigid 4-carboxyphenyl linker. As a PDT agent, the efficacy of E-NP toward the AGS cancer cell line showed enhanced photosensitising ability as determined through in vitro photobiological assays. The cellular uptake of E-NPs by AGS cells led to apoptosis by upregulating ROS through cell-cycle arrest and loss of mitochondrial membrane potential. The subcellular localisation of the PSs in mitochondria stimulated apoptosis through upregulation of p21, a proliferation inhibitor capable of preventing tumour development. Under both PDT and non-PDT conditions, this nanohybrid can act as an anti-inflammatory agent by decreasing the production of NO and superoxide ions in murine macrophages, thus minimising collateral damage to healthy cells.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cyclin-Dependent Kinase Inhibitor p21/antagonists & inhibitors , Photochemotherapy , Photosensitizing Agents/pharmacology , Protective Agents/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Magnetite Nanoparticles/chemistry , Mice , Molecular Structure , Nanoparticles/chemistry , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porphyrins/chemistry , Porphyrins/pharmacology , Protective Agents/chemical synthesis , Protective Agents/chemistry , Structure-Activity Relationship
17.
Eur J Med Chem ; 228: 114036, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34906762

ABSTRACT

RIPK1 plays a key role in the necroptosis pathway that regulates inflammatory signaling and cell death in various diseases, including inflammatory and neurodegenerative diseases. Herein, we report a series of potent RIPK1 inhibitors, represented by compound 70. Compound 70 efficiently blocks necroptosis induced by TNFα in both human and mouse cells (EC50 = 17-30 nM). Biophysical assay demonstrates that compound 70 potently binds to RIPK1 (Kd = 9.2 nM), but not RIPK3 (Kd > 10,000 nM). Importantly, compound 70 exhibits greatly improved metabolic stability in human and rat liver microsomes compared to compound 6 (PK68), a RIPK1 inhibitor reported in our previous work. In addition, compound 70 displays high permeability in Caco-2 cells and excellent in vitro safety profiles in hERG and CYP assays. Moreover, pre-treatment of 70 significantly ameliorates hypothermia and lethal shock in SIRS mice model. Lastly, compound 70 possesses favorable pharmacokinetic parameters with moderate clearance and good oral bioavailability in SD rat. Taken together, our work supports 70 as a potent RIPK1 inhibitor and highlights its potential as a prototypical lead for further development in necroptosis-associated inflammatory disorders.


Subject(s)
Acetamides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Drug Design , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiazoles/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
18.
Bioorg Med Chem ; 53: 116506, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34890996

ABSTRACT

Tuberculosis (TB) remains a serious public health problem and one of the main concern is the emergence of multidrug-resistant and extensively resistant TB. Hyper-reactive patients develop inflammatory necrotic lung lesions that aggravate the pathology and facilitate transmission of mycobacteria. Treatment of severe TB is a major clinical challenge that has few effective solutions and patients face a poor prognosis, years of treatment and different adverse drug reactions. In this work, fifteen novel and thirty-one unusual thiourea derivatives were synthesized and evaluated in vitro for their antimycobacterial and anti-inflammatory potential and, in silico for ADMET parameters and for structure-activity relationship (SAR). Thioureas derivatives 10, 15, 16, 28 and 29 that had shown low cytotoxicity and high activities were selected for further investigation, after SAR study. These five thioureas derivatives inhibited Mtb H37Rv growth in bacterial culture and in infected macrophages, highlighting thiourea derivative 28 (MIC50 2.0 ± 1.1 and 2.3 ± 1.1 µM, respectively). Moreover, these compounds were active against the hypervirulent clinical Mtb strain M299, in bacterial culture, especially 16, 28 and 29, and in extracellular clumps, highlighting 29, with MIC50 5.6 ± 1.2 µM. Regarding inflammation, they inhibited NO through the suppression of iNOS expression, and also inhibited the production of TNF-α and IL-1ß. In silico studies were carried out suggesting that these five compounds could be administered by oral route and have low toxicological effects when compared to rifampicin. In conclusion, our data show that, at least, thiourea derivatives 16, 28 and 29 are promising antimycobacterial and anti-inflammatory agents, and candidates for further prospective studies aiming new anti-TB drugs, that can be used on a dual approach for the treatment of severe TB cases associated with exacerbated inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiourea/pharmacology , Tuberculosis, Pulmonary/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Severity of Illness Index , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Tuberculosis, Pulmonary/microbiology
19.
Carbohydr Polym ; 277: 118858, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893265

ABSTRACT

We report herein the development of the novel nanohybrids of gold nanoparticles reduced/stabilized/coated with collagen (AuNPs@collagen) in the first layer and subsequently modified with biotin-quat188-chitosan (Bi-QCS) in the outer layer for 5-fluorouracil (5-FU) delivery to improve cellular uptake and promote specific cell targeting of the nanocarrier. The fabrication of the layer-by-layer technique on the surface of gold nanoparticles (AuNPs) can overcome the limitation of poor drug loading capacity of the classic AuNPs from 64.67% to 87.46%. The AuNPs@collagen coated by the Bi-QCS exhibits strong electrostatic interactions between drug anion (5-FU) and amine groups of the modified chitosan as well as hydrogen bonding. Furthermore, the Bi-QCS-AuNPs@collagen demonstrated a significantly higher anti-inflammatory activity in RAW264.7 macrophage cell line. The Bi-QCS-AuNPs@collagen enhanced the activity of 5-FU approximately 3.3-fold (HeLa) and 6.2-fold (A549), compared to the free 5-Fluorouracil. According to these results, it is very promising that Bi-QCS-AuNPs@collagen can be used as an effective drug delivery carrier in the future.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Drug Delivery Systems , Fluorouracil/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antimetabolites, Antineoplastic/chemical synthesis , Antimetabolites, Antineoplastic/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Chitosan/chemistry , Collagen/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Fluorouracil/chemical synthesis , Fluorouracil/chemistry , Gold/chemistry , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Metal Nanoparticles/chemistry , Mice , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Particle Size , RAW 264.7 Cells
20.
Bioorg Chem ; 119: 105557, 2022 02.
Article in English | MEDLINE | ID: mdl-34952242

ABSTRACT

A new set of ibuprofen-quinoline conjugates comprising quinolinyl heterocycle and ibuprofen moieties linked by an alkyl chain were synthesized in good yields utilizing an optimized reaction procedure in a molecular hybridization approach to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. The synthesized conjugates were screened for their anti-inflammatory, and ulcerogenic properties. Several conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test without showing any ulcerogenic liability. In addition, most conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate test. The most promising conjugates were the unsubstituted and 6-substituted fluoro- and chloro-derivatives of 2-(trifluoromethyl)quinoline linked to ibuprofen by a propyl chain. Their anti-inflammatory activity was evaluated against LPS-stimulated inflammatory reactions in RAW264.7 mouse macrophages. In this regard, it was found that most of the conjugates were able to significantly reduce the release and production of nitric oxide in the LPS-stimulated macrophages. The secretion and expression of the pro-inflammatory cytokines IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) were also significantly suppressed.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Drug Design , Ibuprofen/pharmacology , Quinolines/pharmacology , Acetic Acid , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/chemistry , Cytokines/antagonists & inhibitors , Cytokines/biosynthesis , Dose-Response Relationship, Drug , Ibuprofen/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Pain/chemically induced , Pain/drug therapy , Quantitative Structure-Activity Relationship , Quinolines/chemistry , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...